
araQne: a compiler for distributed 
quantum computing

 

The practical implementation of quantum computing to solve real-world industrial 
problems is one of the most highly anticipated milestones in the field. Applications 
span diverse areas, including vehicle routing, molecular design, portfolio 
optimization, and cryptography. Achieving this goal requires quantum computers 
with both high qubit capacity and low error rates. For instance, both breaking the 
RSA-2048 encryption algorithm and developing corrosion-resistant materials are 
estimated to require orders of magnitude of thousands of qubits. Additionally, a 
significant challenge lies in quantum data's inherent fragility, which necessitates 
error correction for achieving low error rates. Error correction involves bundling 
hundreds or thousands of physical qubits into a single, reliable logical qubit to reduce 
errors. This process dramatically inflates the number of physical qubits needed. For 
the examples mentioned, the number of physical qubits scales polynomially with the 
logical qubits, pushing the required physical qubit count into the millions.   Thus, 
scaling is the key to unlock quantum computing's transformative potential in 
industrial applications. However, as number of qubits within a single Quantum 
Processing Unit (QPU) grows, issues like qubit decoherence, dissipation, and crosstalk 
intensify and compromise the quantum behavior of the system. 

Distributed Quantum Computing (DQC) has emerged as a promising approach to 
providing an alternative direction towards scalability of current quantum systems. 
The idea behind it is the distribution of algorithms over a network of interconnected 
QPUs. In this context, the problem of automating and optimizing this distribution 
arises. We at Welinq are at the forefront of current DQC research with pioneering 
research and development on hardware and algorithms and are glad to present 
araQne: a compiler for distributed quantum computing, currently under 
development by our algorithm group.  This presentation provides a first glimpse of 
the current capabilities of the compiler and how it enhances the applicability of 
quantum algorithms through efficient distribution strategies.

DQC in a Nutshell  
DQC envisions quantum processors interconnected via quantum links and classical 
channels. A quantum link (QL) is needed to create entanglement between qubits 
belonging to different QPUs. Specifically, a single query to the quantum link allows 
QPUs to share a Bell Pair (BP):
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In this framework, we distinguish between two types of qubits: data qubits and 
communication qubits. The former are exclusively dedicated to performing the 
quantum computations outlined by the algorithm. The latter, on the other hand, are 
dedicated to communication between QPUs, as they are reserved in storing BPs.

    

    

    Figure: network of distributed and interconnected QPUs.

 

Implementation of non-local operations  

These interconnected QPUs should work as a single quantum processor capable of 
executing algorithms that demand a number of qubits beyond the capacity of a single 
current device. In order to achieve this an algorithm should be divided into smaller 
ones, each of which is assigned to a different QPUs. When this is done certain multi-
qubit operations may involve qubits located on distinct QPUs. We refer to these 
operations as non-local. 

How is it possible to implement a non-local operation? It is sufficient that a Bell state 
is stored into a pair communication qubits, one per QPU. Once the quantum link is 
used, only Local Operations and Classical Communication (LOCC) are needed to carry 
out a non-local operation. 
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    Figure: non-local gate implementation via quantum communication protocol.

Let us be more concrete and see one example. Suppose that we want to implement a 
CNOT on two qubits assigned to separate QPUs. One way to to it is to use the so-called 
TeleGate (TG) protocol, which uses two essential communication primitives called 
Cat-Entangler (CE) and Cat-Disentangler (CD). 

    

Figure: TG protocol for implementing a non-local CNOT.

 

We remark that, according to the TG protocol shown here, one BP is consumed when 
a single non-local operation is performed. Because the number of quantum links may 
be limited in real hardware and the depth of the algorithm is slightly increased after 
each TG, the number of uses of quantum links is a key parameter to optimize when 
distributing a quantum algorithm.
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A Compiler for DQC  
Given what we have seen up to now, a key question arises: what is an optimal way to 
partition a quantum circuit over many QPUs so as to minimize the number of timed 
a Bell pair is consumed?

araQne is designed with the goal of answering this question, seeking to provide 
optimal partitioning of a given circuit.  That is, a partitioning that reduces as much as 
possible the entanglement resources required to implement the necessary nonlocal 
operations. At the current state, our compiler addresses two core challenges:

qubit allocation: how to decide which qubit should be allocated to which QPU,

job scheduling: how to apply non-local gates in a way that minimizes the 
number of inter-processor operations between different QPUs

These two challenges become increasingly hard to solve as the quantum algorithms 
scales up, hence the need for an automatic tool such as araQne.

DQC compiler workflow  

araQne workflow begins by the input information, comprised by two parts, as shown 
in the figure below: a quantum algorithm represented as an abstract circuit and the 
hardware specifications such as number of QPUs in the network or available data 
qubits in each QPU. For simplicity in the following we will only consider a balanced 
scenario, where each QPU has the same amount of data qubits, and no restriction on 
the number of communication qubits or network topology. 

    

Figure: DQC compiler workflow.

araQne processing phase starts by partitioning the monolithic circuit to address the 
qubit allocation problem, ensuring that each QPU receives the same amount of 
qubits. The resulting non-local gates between sub-circuits are then analyzed in order 
to minimize quantum communication, meaning that entanglement resources 
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consumed by operations between qubits on different QPUs are reduced as much as 
possible, hence addressing the remote gate scheduling problem as well. In its final 
output, the compiler produces a distributed version of the original algorithm. 

This work-flow enables a seamless translation from a monolithic quantum circuit to 
an optimized, distributed version that maximizes computing capabilities while 
minimizing communication overhead.

In the following we will have a look at how a DQC compiler could help us transform 
an undistributed monolithic quantum circuit into its distributed version.

Distributed quantum Fourier transform  
The Quantum Fourier Transform (QFT) algorithm has proven to be central as a key 
building block for many quantum algorithms: first and foremost, it permits access to 
the estimation of the eigenvalues of unitary operators via the quantum phase 
estimation algorithm, as well as to Shor’s algorithm for the factoring of large 
integers, while also to order finding and solution counting algorithms, once 
combined with the quantum search algorithm. Its successful implementation is 
therefore very important to a wide range of applications in quantum computing.

    

    Figure: QFT circuit for n qubits.

 

We focus here on the standard implementation of QFT, as it is an example of circuit 
with practical use and for which the qubit connectivity is a complete graph, that is, 
the worst case scenario for the distribution of a monolithic quantum circut.
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Non-local gates in QFT  

QFT is an excellent candidate to test DQC due to its recursive and layered structure 
which includes a high number of two-qubit gates. Such controlled gates become 
increasingly challenging to manage from a distributed perspective, as the portion of 
those that have to be non-local increases rapidly as the number of qubits grows.

Indeed, consider the QFT algorithm for  logical qubits and suppose we want to 
distribute it over  QPUs, where  is a dividend of , each of which can handle the 
same number of qubits. Since there are   non-local gates between every pair of 
partitions and  pairs of possible partitions, then a balanced -partition 
introduced a number of non-local gates equal to

each of which needs to be implemented using a protocol.

As explained before, in general the number of Bell pairs matches that of non-local 
operations in the distributed circuit. The key to achieving this reduction is to 
optimally identify  sequences of controlled gates  sharing the same control qubit, 
with target qubits managed by different QPUs, as shown in the picture below, and 
apply TG to the whole sequence.

    

    Figure: TG protocol covering more than one non-local gate.
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With this in mind, let us turn our attention to the results achieved by araQne, which 
leverages such property of TG by using a smart sequence identification strategy.  We 
quantify the difference between the number  of non-local gates and the number 

 of Bell pairs consumed for their implementation by the Bell Pair Reduction Ratio 
( ), defined as follows:

It quantifies how many non-local gates can implemented with one single BP. Without 
the above strategy the BPRR is 1, signaling that each non-local operation is 
implemented using a BP.  On the contrary, with the above strategy, as it can be seen 
in the plot below,  indicates that a single BP can be used for the implementation of 
multiple non-local operations covered by the same TG. 

    

    Picture: BPRR per number of qubits for QFT. Colors identify different k-partitions, with k 
being the number of QPUs.

As it can be seen in the picture above, araQne reduces the number of Bell pairs 
required by a factor that grows with the number of qubits in the circuit. Finally, note 
that the distribution becomes more expensive, in terms of Bell pairs, as the number 
of QPUs in the network grows. Therefore, the BPRR decreases for a fixed circuit size 
and an increasing number of QPUs.
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Distributed quantum approximate optimization 
algorithm

 

The Quantum Approximate Optimization Algorithm (QAOA)  is a quantum algorithm 
designed for tackling optimization problems  which is proven to be highly useful for 
implementation in current NISQ devices. However, large-scale quantum systems are 
required to represent complex interactions among variables which are usually 
present in real-world scenarios. A distributed setup may allow for scalability beyond 
the limitations of individual QPUs, enabling QAOA to tackle problem sizes and 
complexities that would be unattainable on a single QPU.

One relevant example is the Max-Cut (MC) problem.  The MC problem has many 
applications, from classification problems in machine learning to optimization 
problems in finance, logistics, physics and circuit design. Given an undirected graph 

, the  Max-Cut problem is solved by identifying two partitions of  such that the 
number of cut edges is maximized.

We can use QAOA to tackle this problem, employing  unitary operators  
 which are Hamiltonian oracles, parametrized by  

 and . At each layer ,  and  encode 
respectively the mixer Hamiltonian, which explores the solution space, and the cost 
Hamiltonian, which encodes the optimization problem.

    

    Picture: QAOA Circuit composed of p layers.

As was done for QFT, it is possible to consider the required Bell pairs in the 
distribution and compare them with the total number of nonlocal gates for a single 
layer of the QAOA circuit. This is shown in the picture below, where we consider  
Erdős–Rényi (ER) random graph instances with an increasing number of vertexes and 
with probability  of edge inclusion. To measure the ratio of Bell pair saved by 
araQne, the  metric is again employed.  In this case, the number of nonlocal 
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gates is calculated using a naïve qubit assignment technique based on simple 
weighted graphs.

    

    Picture: BPRR per number of qubits for QAOA applied to ER graphs with probability 0.8. Colors 
identify different k-partitions, with k being the number of QPUs.

Here, the number of Bell pairs consumed in the distributed QAOA is reduced down to 
one forth thanks to araQne. The difference between the scaling of the BPRR in the 
QFT and QAOA cases stems from the fact that the structure of the former algorithm 
allows greater coverage of non-local operations by a single TG protocol.

Summary  
We have introduced the araQne compiler and its use for DQC. For the algorithms 
presented here, QFT and QAOA, we witness a significant optimization of the use of 
entanglement resources, achieved by employing specific optimization techniques. 
Future versions of araQne will incorporate additional such techniques, along with the 
possibility of giving as input network topologies and more hardware-specific 
features.
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